Expansive Actions on Uniform Spaces and Surjunctive Maps
نویسندگان
چکیده
We present a uniform version of a result of M. Gromov on the surjunctivity of maps commuting with expansive group actions and discuss several applications.
منابع مشابه
Non-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملEndomorphisms of symbolic algebraic varieties
The theorem of Ax says that any regular selfmapping of a complex algebraic variety is either surjective or non-injective; this property is called surjunctivity and investigated in the present paper in the category of proregular mappings of proalgebraic spaces. We show that such maps are surjunctive if they commute with sufficiently large automorphism groups. Of particular interest is the case o...
متن کاملFixed Point Theorems for Single Valued Mappings Satisfying the Ordered non-Expansive Conditions on Ultrametric and Non-Archimedean Normed Spaces
In this paper, some fixed point theorems for nonexpansive mappings in partially ordered spherically complete ultrametric spaces are proved. In addition, we investigate the existence of fixed points for nonexpansive mappings in partially ordered non-Archimedean normed spaces. Finally, we give some examples to discuss the assumptions and support our results.
متن کاملExpansive Subdynamics for Algebraic Z -actions
A general framework for investigating topological actions of Zd on compact metric spaces was proposed by Boyle and Lind in terms of expansive behavior along lower-dimensional subspaces ofRd . Here we completely describe this expansive behavior for the class of algebraic Zd -actions given by commuting automorphisms of compact abelian groups. The description uses the logarithmic image of an algeb...
متن کاملAn iterative method for amenable semigroup and infinite family of non expansive mappings in Hilbert spaces
begin{abstract} In this paper, we introduce an iterative method for amenable semigroup of non expansive mappings and infinite family of non expansive mappings in the frame work of Hilbert spaces. We prove the strong convergence of the proposed iterative algorithm to the unique solution of a variational inequality, which is the optimality condition for a minimization problem. The results present...
متن کامل